Model Multivariate Distribution by Vine Copula
model_vine.Rd
Estimate the multivariate distribution of the model data via vine copula estimation (see rvinecopulib::vine).
Arguments
- data
data.frame
Data to estimate the multivariate distribution.- margins_controls
list
A list with arguments to be passed tokde1d::kde1d()
. Currently, there can bemult
numeric vector of length one or d; all bandwidths for marginal kernel density estimation are multiplied withmult
. Defaults tolog(1 + d)
whered
is the number of climate variables.xmin
numeric vector of length d; seekde1d::kde1d()
.xmax
numeric vector of length d; seekde1d::kde1d()
.bw
numeric vector of length d; seekde1d::kde1d()
.deg
numeric vector of length one or d;kde1d::kde1d()
.type
character vector of length one or d; must be one of c, cont, continuous for continuous variables, one of d, disc, discrete for discrete integer variables, or one of zi, zinfl, zero-inflated for zero-inflated variables.
- ...
Arguments are passed to rvinecopulib::vinecop to specify the structure of vines and margins. Note that the ellipsis of observed and model data are specified with the same arguments.
Value
The PIT-transformed margins from estimate_margins()
. Additionally
the data frame contains the attribute vine
with the vine copula model and
the attribute kde
with the kernel density estimation of the data.