Model Multivariate Distribution by Vine Copula
model_vine.RdEstimate the multivariate distribution of the model data via vine copula estimation (see rvinecopulib::vine).
Arguments
- data
data.frame Data to estimate the multivariate distribution.
- margins_controls
list A list with arguments to be passed to
kde1d::kde1d(). Currently, there can bemultnumeric vector of length one or d; all bandwidths for marginal kernel density estimation are multiplied withmult. Defaults tolog(1 + d)wheredis the number of climate variables.xminnumeric vector of length d; seekde1d::kde1d().xmaxnumeric vector of length d; seekde1d::kde1d().bwnumeric vector of length d; seekde1d::kde1d().degnumeric vector of length one or d;kde1d::kde1d().typecharacter vector of length one or d; must be one of c, cont, continuous for continuous variables, one of d, disc, discrete for discrete integer variables, or one of zi, zinfl, zero-inflated for zero-inflated variables.
- ...
Arguments are passed to rvinecopulib::vinecop to specify the structure of vines and margins. Note that the ellipsis of observed and model data are specified with the same arguments.
Value
The PIT-transformed margins from estimate_margins(). Additionally
the data frame contains the attribute vine with the vine copula model and
the attribute kde with the kernel density estimation of the data.